This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of 19.12 where its converse holds. See 19.12vvv for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 18-Jul-2001) (Revised by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.12vv | |- ( E. x A. y ( ph -> ps ) <-> A. y E. x ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v | |- ( A. y ( ph -> ps ) <-> ( ph -> A. y ps ) ) |
|
| 2 | 1 | exbii | |- ( E. x A. y ( ph -> ps ) <-> E. x ( ph -> A. y ps ) ) |
| 3 | nfv | |- F/ x ps |
|
| 4 | 3 | nfal | |- F/ x A. y ps |
| 5 | 4 | 19.36 | |- ( E. x ( ph -> A. y ps ) <-> ( A. x ph -> A. y ps ) ) |
| 6 | 19.36v | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) ) |
|
| 7 | 6 | albii | |- ( A. y E. x ( ph -> ps ) <-> A. y ( A. x ph -> ps ) ) |
| 8 | nfv | |- F/ y ph |
|
| 9 | 8 | nfal | |- F/ y A. x ph |
| 10 | 9 | 19.21 | |- ( A. y ( A. x ph -> ps ) <-> ( A. x ph -> A. y ps ) ) |
| 11 | 7 10 | bitr2i | |- ( ( A. x ph -> A. y ps ) <-> A. y E. x ( ph -> ps ) ) |
| 12 | 2 5 11 | 3bitri | |- ( E. x A. y ( ph -> ps ) <-> A. y E. x ( ph -> ps ) ) |