This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0inp0 | ⊢ ( 𝐴 = ∅ → ¬ 𝐴 = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 | ⊢ ∅ ≠ { ∅ } | |
| 2 | neeq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ≠ { ∅ } ↔ ∅ ≠ { ∅ } ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ≠ { ∅ } ) |
| 4 | 3 | neneqd | ⊢ ( 𝐴 = ∅ → ¬ 𝐴 = { ∅ } ) |