This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexr2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpnz | ||
| 2 | dmxp | ||
| 3 | 2 | adantl | |
| 4 | dmexg | ||
| 5 | 4 | adantr | |
| 6 | 3 5 | eqeltrrd | |
| 7 | rnxp | ||
| 8 | 7 | adantl | |
| 9 | rnexg | ||
| 10 | 9 | adantr | |
| 11 | 8 10 | eqeltrrd | |
| 12 | 6 11 | anim12dan | |
| 13 | 12 | ancom2s | |
| 14 | 1 13 | sylan2br |