This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
xpexcnv
Metamath Proof Explorer
Description: A condition where the converse of xpex holds as well. Corollary 6.9(2)
in TakeutiZaring p. 26. (Contributed by Andrew Salmon , 13-Nov-2011)
Ref
Expression
Assertion
xpexcnv
⊢ B ≠ ∅ ∧ A × B ∈ V → A ∈ V
Proof
Step
Hyp
Ref
Expression
1
dmexg
⊢ A × B ∈ V → dom ⁡ A × B ∈ V
2
dmxp
⊢ B ≠ ∅ → dom ⁡ A × B = A
3
2
eleq1d
⊢ B ≠ ∅ → dom ⁡ A × B ∈ V ↔ A ∈ V
4
1 3
imbitrid
⊢ B ≠ ∅ → A × B ∈ V → A ∈ V
5
4
imp
⊢ B ≠ ∅ ∧ A × B ∈ V → A ∈ V