This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrf1o
Metamath Proof Explorer
Description: The edge function of a simple graph is a bijective function onto its
range. (Contributed by Alexander van der Vekens , 18-Nov-2017)
(Revised by AV , 15-Oct-2020)
Ref
Expression
Hypothesis
usgrf1o.e
⊢ E = iEdg ⁡ G
Assertion
usgrf1o
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 onto ran ⁡ E
Proof
Step
Hyp
Ref
Expression
1
usgrf1o.e
⊢ E = iEdg ⁡ G
2
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
3
2 1
usgrfs
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 Vtx ⁡ G | x = 2
4
f1f1orn
⊢ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 Vtx ⁡ G | x = 2 → E : dom ⁡ E ⟶ 1-1 onto ran ⁡ E
5
3 4
syl
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 onto ran ⁡ E