This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrf1
Metamath Proof Explorer
Description: The edge function of a simple graph is a one to one function.
(Contributed by Alexander van der Vekens , 18-Nov-2017) (Revised by AV , 15-Oct-2020)
Ref
Expression
Hypothesis
usgrf1o.e
⊢ E = iEdg ⁡ G
Assertion
usgrf1
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 ran ⁡ E
Proof
Step
Hyp
Ref
Expression
1
usgrf1o.e
⊢ E = iEdg ⁡ G
2
1
usgrf1o
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 onto ran ⁡ E
3
f1of1
⊢ E : dom ⁡ E ⟶ 1-1 onto ran ⁡ E → E : dom ⁡ E ⟶ 1-1 ran ⁡ E
4
2 3
syl
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 ran ⁡ E