This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrfs
Metamath Proof Explorer
Description: The edge function of a simple graph is a one-to-one function into
unordered pairs of vertices. Simplified version of usgrf .
(Contributed by Alexander van der Vekens , 13-Aug-2017) (Revised by AV , 13-Oct-2020)
Ref
Expression
Hypotheses
isuspgr.v
⊢ V = Vtx ⁡ G
isuspgr.e
⊢ E = iEdg ⁡ G
Assertion
usgrfs
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2
Proof
Step
Hyp
Ref
Expression
1
isuspgr.v
⊢ V = Vtx ⁡ G
2
isuspgr.e
⊢ E = iEdg ⁡ G
3
1 2
isusgrs
⊢ G ∈ USGraph → G ∈ USGraph ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2
4
3
ibi
⊢ G ∈ USGraph → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2