This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgredgop
Metamath Proof Explorer
Description: An edge of a simple graph as second component of an ordered pair.
(Contributed by Alexander van der Vekens , 17-Aug-2017) (Proof shortened by Alexander van der Vekens , 16-Dec-2017) (Revised by AV , 15-Oct-2020)
Ref
Expression
Assertion
usgredgop
⊢ G ∈ USGraph ∧ E = iEdg ⁡ G ∧ X ∈ dom ⁡ E → E ⁡ X = M N ↔ X M N ∈ E
Proof
Step
Hyp
Ref
Expression
1
usgrfun
⊢ G ∈ USGraph → Fun ⁡ iEdg ⁡ G
2
funeq
⊢ E = iEdg ⁡ G → Fun ⁡ E ↔ Fun ⁡ iEdg ⁡ G
3
1 2
syl5ibrcom
⊢ G ∈ USGraph → E = iEdg ⁡ G → Fun ⁡ E
4
3
imp
⊢ G ∈ USGraph ∧ E = iEdg ⁡ G → Fun ⁡ E
5
funopfvb
⊢ Fun ⁡ E ∧ X ∈ dom ⁡ E → E ⁡ X = M N ↔ X M N ∈ E
6
4 5
stoic3
⊢ G ∈ USGraph ∧ E = iEdg ⁡ G ∧ X ∈ dom ⁡ E → E ⁡ X = M N ↔ X M N ∈ E