This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected hypergraphs
uhgrf
Metamath Proof Explorer
Description: The edge function of an undirected hypergraph is a function into the
power set of the set of vertices. (Contributed by Alexander van der
Vekens , 26-Dec-2017) (Revised by AV , 9-Oct-2020)
Ref
Expression
Hypotheses
uhgrf.v
⊢ V = Vtx ⁡ G
uhgrf.e
⊢ E = iEdg ⁡ G
Assertion
uhgrf
⊢ G ∈ UHGraph → E : dom ⁡ E ⟶ 𝒫 V ∖ ∅
Proof
Step
Hyp
Ref
Expression
1
uhgrf.v
⊢ V = Vtx ⁡ G
2
uhgrf.e
⊢ E = iEdg ⁡ G
3
1 2
isuhgr
⊢ G ∈ UHGraph → G ∈ UHGraph ↔ E : dom ⁡ E ⟶ 𝒫 V ∖ ∅
4
3
ibi
⊢ G ∈ UHGraph → E : dom ⁡ E ⟶ 𝒫 V ∖ ∅