This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, all morphisms are monomorphisms. Example 7.33(9) of Adamek p. 110. The converse does not hold. See grptcmon . (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincid.c | ||
| thincid.b | |||
| thincid.h | |||
| thincid.x | |||
| thincmon.y | |||
| thincmon.m | |||
| Assertion | thincmon |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincid.c | ||
| 2 | thincid.b | ||
| 3 | thincid.h | ||
| 4 | thincid.x | ||
| 5 | thincmon.y | ||
| 6 | thincmon.m | ||
| 7 | simpr1 | ||
| 8 | 4 | adantr | |
| 9 | simpr2 | ||
| 10 | simpr3 | ||
| 11 | 1 | adantr | |
| 12 | 7 8 9 10 2 3 11 | thincmo2 | |
| 13 | 12 | a1d | |
| 14 | 13 | ralrimivvva | |
| 15 | eqid | ||
| 16 | 1 | thinccd | |
| 17 | 2 3 15 6 16 4 5 | ismon2 | |
| 18 | 14 17 | mpbiran2d | |
| 19 | 18 | eqrdv |