This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The symmetric group on a singleton has cardinality 1 .
(Contributed by AV, 9-Dec-2018)
|
|
Ref |
Expression |
|
Hypotheses |
symg1bas.1 |
|
|
|
symg1bas.2 |
|
|
|
symg1bas.0 |
|
|
Assertion |
symg1hash |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symg1bas.1 |
|
| 2 |
|
symg1bas.2 |
|
| 3 |
|
symg1bas.0 |
|
| 4 |
|
snfi |
|
| 5 |
3 4
|
eqeltri |
|
| 6 |
1 2
|
symghash |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
3
|
fveq2i |
|
| 9 |
|
hashsng |
|
| 10 |
8 9
|
eqtrid |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
fac1 |
|
| 13 |
11 12
|
eqtrdi |
|
| 14 |
7 13
|
eqtrid |
|