This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralnex
Metamath Proof Explorer
Description: Relationship between restricted universal and existential quantifiers.
(Contributed by NM , 21-Jan-1997) (Proof shortened by BJ , 16-Jul-2021)
Ref
Expression
Assertion
ralnex
⊢ ∀ x ∈ A ¬ φ ↔ ¬ ∃ x ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
raln
⊢ ∀ x ∈ A ¬ φ ↔ ∀ x ¬ x ∈ A ∧ φ
2
alnex
⊢ ∀ x ¬ x ∈ A ∧ φ ↔ ¬ ∃ x x ∈ A ∧ φ
3
df-rex
⊢ ∃ x ∈ A φ ↔ ∃ x x ∈ A ∧ φ
4
2 3
xchbinxr
⊢ ∀ x ¬ x ∈ A ∧ φ ↔ ¬ ∃ x ∈ A φ
5
1 4
bitri
⊢ ∀ x ∈ A ¬ φ ↔ ¬ ∃ x ∈ A φ