This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets R1 . Proposition 9.15(3) of TakeutiZaring p. 79. (Contributed by NM, 8-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankid.1 | |- A e. _V |
|
| Assertion | ssrankr1 | |- ( B e. On -> ( B C_ ( rank ` A ) <-> -. A e. ( R1 ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankid.1 | |- A e. _V |
|
| 2 | unir1 | |- U. ( R1 " On ) = _V |
|
| 3 | 1 2 | eleqtrri | |- A e. U. ( R1 " On ) |
| 4 | r1fnon | |- R1 Fn On |
|
| 5 | fndm | |- ( R1 Fn On -> dom R1 = On ) |
|
| 6 | 4 5 | ax-mp | |- dom R1 = On |
| 7 | 6 | eleq2i | |- ( B e. dom R1 <-> B e. On ) |
| 8 | 7 | biimpri | |- ( B e. On -> B e. dom R1 ) |
| 9 | rankr1clem | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |
|
| 10 | 3 8 9 | sylancr | |- ( B e. On -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |
| 11 | 10 | bicomd | |- ( B e. On -> ( B C_ ( rank ` A ) <-> -. A e. ( R1 ` B ) ) ) |