This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ss2rabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999) Avoid axioms. (Revised by SN, 4-Feb-2025)

Ref Expression
Hypothesis ss2rabi.1 x A φ ψ
Assertion ss2rabi x A | φ x A | ψ

Proof

Step Hyp Ref Expression
1 ss2rabi.1 x A φ ψ
2 1 adantl x A φ ψ
3 2 ss2rabdv x A | φ x A | ψ
4 3 mptru x A | φ x A | ψ