This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
sralmod0.a |
|
|
|
sralmod0.z |
|
|
|
sralmod0.s |
|
|
Assertion |
sralmod0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralmod0.a |
|
| 2 |
|
sralmod0.z |
|
| 3 |
|
sralmod0.s |
|
| 4 |
|
eqidd |
|
| 5 |
1 3
|
srabase |
|
| 6 |
1 3
|
sraaddg |
|
| 7 |
6
|
oveqdr |
|
| 8 |
4 5 7
|
grpidpropd |
|
| 9 |
2 8
|
eqtrd |
|