This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlsubgsubrng.r | ||
| rng2idlsubgsubrng.i | |||
| rng2idlsubgsubrng.u | |||
| Assertion | rng2idlsubgsubrng |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlsubgsubrng.r | ||
| 2 | rng2idlsubgsubrng.i | ||
| 3 | rng2idlsubgsubrng.u | ||
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | eqid | ||
| 7 | eqid | ||
| 8 | 4 5 6 7 | 2idlelb | |
| 9 | 8 | simplbi | |
| 10 | 2 9 | syl | |
| 11 | eqid | ||
| 12 | 4 11 | rnglidlrng | |
| 13 | 1 10 3 12 | syl3anc | |
| 14 | 1 2 13 | rng2idlsubrng |