This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlsubgsubrng.r | |- ( ph -> R e. Rng ) |
|
| rng2idlsubgsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
| rng2idlsubgsubrng.u | |- ( ph -> I e. ( SubGrp ` R ) ) |
||
| Assertion | rng2idlsubgsubrng | |- ( ph -> I e. ( SubRng ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlsubgsubrng.r | |- ( ph -> R e. Rng ) |
|
| 2 | rng2idlsubgsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
| 3 | rng2idlsubgsubrng.u | |- ( ph -> I e. ( SubGrp ` R ) ) |
|
| 4 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 5 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 6 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 7 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
| 8 | 4 5 6 7 | 2idlelb | |- ( I e. ( 2Ideal ` R ) <-> ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 9 | 8 | simplbi | |- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` R ) ) |
| 10 | 2 9 | syl | |- ( ph -> I e. ( LIdeal ` R ) ) |
| 11 | eqid | |- ( R |`s I ) = ( R |`s I ) |
|
| 12 | 4 11 | rnglidlrng | |- ( ( R e. Rng /\ I e. ( LIdeal ` R ) /\ I e. ( SubGrp ` R ) ) -> ( R |`s I ) e. Rng ) |
| 13 | 1 10 3 12 | syl3anc | |- ( ph -> ( R |`s I ) e. Rng ) |
| 14 | 1 2 13 | rng2idlsubrng | |- ( ph -> I e. ( SubRng ` R ) ) |