This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
2idlelb
Metamath Proof Explorer
Description: Membership in a two-sided ideal. Formerly part of proof for
2idlcpbl . (Contributed by Mario Carneiro , 14-Jun-2015) (Revised by AV , 20-Feb-2025)
Ref
Expression
Hypotheses
2idlel.i
⊢ I = LIdeal ⁡ R
2idlel.o
⊢ O = opp r ⁡ R
2idlel.j
⊢ J = LIdeal ⁡ O
2idlel.t
⊢ T = 2Ideal ⁡ R
Assertion
2idlelb
⊢ U ∈ T ↔ U ∈ I ∧ U ∈ J
Proof
Step
Hyp
Ref
Expression
1
2idlel.i
⊢ I = LIdeal ⁡ R
2
2idlel.o
⊢ O = opp r ⁡ R
3
2idlel.j
⊢ J = LIdeal ⁡ O
4
2idlel.t
⊢ T = 2Ideal ⁡ R
5
1 2 3 4
2idlval
⊢ T = I ∩ J
6
5
elin2
⊢ U ∈ T ↔ U ∈ I ∧ U ∈ J