This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralnex2
Metamath Proof Explorer
Description: Relationship between two restricted universal and existential quantifiers.
(Contributed by Glauco Siliprandi , 11-Dec-2019) (Proof shortened by Wolf
Lammen , 18-May-2023)
Ref
Expression
Assertion
ralnex2
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
ralnex
⊢ ∀ y ∈ B ¬ φ ↔ ¬ ∃ y ∈ B φ
2
1
ralbii
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ∀ x ∈ A ¬ ∃ y ∈ B φ
3
ralnex
⊢ ∀ x ∈ A ¬ ∃ y ∈ B φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B φ
4
2 3
bitri
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B φ