This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rexab
Metamath Proof Explorer
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro , 23-Jan-2014) (Revised by Mario Carneiro , 3-Sep-2015)
Reduce axiom usage. (Revised by GG , 2-Nov-2024)
Ref
Expression
Hypothesis
ralab.1
⊢ y = x → φ ↔ ψ
Assertion
rexab
⊢ ∃ x ∈ y | φ χ ↔ ∃ x ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
ralab.1
⊢ y = x → φ ↔ ψ
2
dfrex2
⊢ ∃ x ∈ y | φ χ ↔ ¬ ∀ x ∈ y | φ ¬ χ
3
1
ralab
⊢ ∀ x ∈ y | φ ¬ χ ↔ ∀ x ψ → ¬ χ
4
2 3
xchbinx
⊢ ∃ x ∈ y | φ χ ↔ ¬ ∀ x ψ → ¬ χ
5
imnang
⊢ ∀ x ψ → ¬ χ ↔ ∀ x ¬ ψ ∧ χ
6
4 5
xchbinx
⊢ ∃ x ∈ y | φ χ ↔ ¬ ∀ x ¬ ψ ∧ χ
7
df-ex
⊢ ∃ x ψ ∧ χ ↔ ¬ ∀ x ¬ ψ ∧ χ
8
6 7
bitr4i
⊢ ∃ x ∈ y | φ χ ↔ ∃ x ψ ∧ χ