This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ralab
Metamath Proof Explorer
Description: Universal quantification over a class abstraction. (Contributed by Jeff
Madsen , 10-Jun-2010) Reduce axiom usage. (Revised by GG , 2-Nov-2024)
Ref
Expression
Hypothesis
ralab.1
⊢ y = x → φ ↔ ψ
Assertion
ralab
⊢ ∀ x ∈ y | φ χ ↔ ∀ x ψ → χ
Proof
Step
Hyp
Ref
Expression
1
ralab.1
⊢ y = x → φ ↔ ψ
2
df-ral
⊢ ∀ x ∈ y | φ χ ↔ ∀ x x ∈ y | φ → χ
3
df-clab
⊢ x ∈ y | φ ↔ x y φ
4
1
sbievw
⊢ x y φ ↔ ψ
5
3 4
bitri
⊢ x ∈ y | φ ↔ ψ
6
5
imbi1i
⊢ x ∈ y | φ → χ ↔ ψ → χ
7
biid
⊢ ψ → χ ↔ ψ → χ
8
6 7
bitri
⊢ x ∈ y | φ → χ ↔ ψ → χ
9
8
albii
⊢ ∀ x x ∈ y | φ → χ ↔ ∀ x ψ → χ
10
2 9
bitri
⊢ ∀ x ∈ y | φ χ ↔ ∀ x ψ → χ