This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
reueq1OLD
Metamath Proof Explorer
Description: Obsolete version of reueq1 as of 12-Mar-2025. (Contributed by NM , 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 .
(Revised by Steven Nguyen , 30-Apr-2023) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Assertion
reueq1OLD
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢ A = B → x ∈ A ↔ x ∈ B
2
1
anbi1d
⊢ A = B → x ∈ A ∧ φ ↔ x ∈ B ∧ φ
3
2
eubidv
⊢ A = B → ∃! x x ∈ A ∧ φ ↔ ∃! x x ∈ B ∧ φ
4
df-reu
⊢ ∃! x ∈ A φ ↔ ∃! x x ∈ A ∧ φ
5
df-reu
⊢ ∃! x ∈ B φ ↔ ∃! x x ∈ B ∧ φ
6
3 4 5
3bitr4g
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ