This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rmoeqd

Description: Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoeqd.1 A = B φ ψ
Assertion rmoeqd A = B * x A φ * x B ψ

Proof

Step Hyp Ref Expression
1 rmoeqd.1 A = B φ ψ
2 rmoeq1 A = B * x A φ * x B φ
3 1 rmobidv A = B * x B φ * x B ψ
4 2 3 bitrd A = B * x A φ * x B ψ