This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
reueq1
Metamath Proof Explorer
Description: Equality theorem for restricted unique existential quantifier.
(Contributed by NM , 5-Apr-2004) Remove usage of ax-10 , ax-11 ,
and ax-12 . (Revised by Steven Nguyen , 30-Apr-2023) Avoid ax-8 .
(Revised by Wolf Lammen , 12-Mar-2025)
Ref
Expression
Assertion
reueq1
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
rexeq
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ
2
rmoeq1
⊢ A = B → ∃ * x ∈ A φ ↔ ∃ * x ∈ B φ
3
1 2
anbi12d
⊢ A = B → ∃ x ∈ A φ ∧ ∃ * x ∈ A φ ↔ ∃ x ∈ B φ ∧ ∃ * x ∈ B φ
4
reu5
⊢ ∃! x ∈ A φ ↔ ∃ x ∈ A φ ∧ ∃ * x ∈ A φ
5
reu5
⊢ ∃! x ∈ B φ ↔ ∃ x ∈ B φ ∧ ∃ * x ∈ B φ
6
3 4 5
3bitr4g
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ