This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankr1
Metamath Proof Explorer
Description: A relationship between the rank function and the cumulative hierarchy of
sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79.
(Contributed by NM , 6-Oct-2003) (Proof shortened by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypothesis
rankid.1
⊢ A ∈ V
Assertion
rankr1
⊢ B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B
Proof
Step
Hyp
Ref
Expression
1
rankid.1
⊢ A ∈ V
2
rankr1g
⊢ A ∈ V → B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B
3
1 2
ax-mp
⊢ B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B