This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Proof shortened by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankid.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankr1 | ⊢ ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankid.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankr1g | ⊢ ( 𝐴 ∈ V → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |