This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralrimdvv
Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted
quantifier version with double quantification.) (Contributed by NM , 1-Jun-2005)
Ref
Expression
Hypothesis
ralrimdvv.1
⊢ φ → ψ → x ∈ A ∧ y ∈ B → χ
Assertion
ralrimdvv
⊢ φ → ψ → ∀ x ∈ A ∀ y ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
ralrimdvv.1
⊢ φ → ψ → x ∈ A ∧ y ∈ B → χ
2
1
imp
⊢ φ ∧ ψ → x ∈ A ∧ y ∈ B → χ
3
2
ralrimivv
⊢ φ ∧ ψ → ∀ x ∈ A ∀ y ∈ B χ
4
3
ex
⊢ φ → ψ → ∀ x ∈ A ∀ y ∈ B χ