This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rgen3

Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008)

Ref Expression
Hypothesis rgen3.1 x A y B z C φ
Assertion rgen3 x A y B z C φ

Proof

Step Hyp Ref Expression
1 rgen3.1 x A y B z C φ
2 1 3expa x A y B z C φ
3 2 ralrimiva x A y B z C φ
4 3 rgen2 x A y B z C φ