This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralnex3
Metamath Proof Explorer
Description: Relationship between three restricted universal and existential
quantifiers. (Contributed by Thierry Arnoux , 12-Jul-2020) (Proof
shortened by Wolf Lammen , 18-May-2023)
Ref
Expression
Assertion
ralnex3
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ¬ φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B ∃ z ∈ C φ
Proof
Step
Hyp
Ref
Expression
1
ralnex
⊢ ∀ z ∈ C ¬ φ ↔ ¬ ∃ z ∈ C φ
2
1
2ralbii
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ¬ φ ↔ ∀ x ∈ A ∀ y ∈ B ¬ ∃ z ∈ C φ
3
ralnex2
⊢ ∀ x ∈ A ∀ y ∈ B ¬ ∃ z ∈ C φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B ∃ z ∈ C φ
4
2 3
bitri
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ¬ φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B ∃ z ∈ C φ