This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ralinexa

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion ralinexa x A φ ¬ ψ ¬ x A φ ψ

Proof

Step Hyp Ref Expression
1 imnan φ ¬ ψ ¬ φ ψ
2 1 ralbii x A φ ¬ ψ x A ¬ φ ψ
3 ralnex x A ¬ φ ψ ¬ x A φ ψ
4 2 3 bitri x A φ ¬ ψ ¬ x A φ ψ