This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
rexanali
Metamath Proof Explorer
Description: A transformation of restricted quantifiers and logical connectives.
(Contributed by NM , 4-Sep-2005) (Proof shortened by Wolf Lammen , 27-Dec-2019)
Ref
Expression
Assertion
rexanali
⊢ ∃ x ∈ A φ ∧ ¬ ψ ↔ ¬ ∀ x ∈ A φ → ψ
Proof
Step
Hyp
Ref
Expression
1
dfrex2
⊢ ∃ x ∈ A φ ∧ ¬ ψ ↔ ¬ ∀ x ∈ A ¬ φ ∧ ¬ ψ
2
iman
⊢ φ → ψ ↔ ¬ φ ∧ ¬ ψ
3
2
ralbii
⊢ ∀ x ∈ A φ → ψ ↔ ∀ x ∈ A ¬ φ ∧ ¬ ψ
4
1 3
xchbinxr
⊢ ∃ x ∈ A φ ∧ ¬ ψ ↔ ¬ ∀ x ∈ A φ → ψ