This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralbi
Metamath Proof Explorer
Description: Distribute a restricted universal quantifier over a biconditional.
Restricted quantification version of albi . (Contributed by NM , 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen , 17-Jun-2023)
Ref
Expression
Assertion
ralbi
⊢ ∀ x ∈ A φ ↔ ψ → ∀ x ∈ A φ ↔ ∀ x ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
biimp
⊢ φ ↔ ψ → φ → ψ
2
1
ral2imi
⊢ ∀ x ∈ A φ ↔ ψ → ∀ x ∈ A φ → ∀ x ∈ A ψ
3
biimpr
⊢ φ ↔ ψ → ψ → φ
4
3
ral2imi
⊢ ∀ x ∈ A φ ↔ ψ → ∀ x ∈ A ψ → ∀ x ∈ A φ
5
2 4
impbid
⊢ ∀ x ∈ A φ ↔ ψ → ∀ x ∈ A φ ↔ ∀ x ∈ A ψ