This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ralsnsg
Metamath Proof Explorer
Description: Substitution expressed in terms of quantification over a singleton.
(Contributed by NM , 14-Dec-2005) (Revised by Mario Carneiro , 23-Apr-2015)
Ref
Expression
Assertion
ralsnsg
⊢ A ∈ V → ∀ x ∈ A φ ↔ [ ˙ A / x ] ˙ φ
Proof
Step
Hyp
Ref
Expression
1
df-ral
⊢ ∀ x ∈ A φ ↔ ∀ x x ∈ A → φ
2
velsn
⊢ x ∈ A ↔ x = A
3
2
imbi1i
⊢ x ∈ A → φ ↔ x = A → φ
4
3
albii
⊢ ∀ x x ∈ A → φ ↔ ∀ x x = A → φ
5
1 4
bitri
⊢ ∀ x ∈ A φ ↔ ∀ x x = A → φ
6
sbc6g
⊢ A ∈ V → [ ˙ A / x ] ˙ φ ↔ ∀ x x = A → φ
7
5 6
bitr4id
⊢ A ∈ V → ∀ x ∈ A φ ↔ [ ˙ A / x ] ˙ φ