This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1ord2
Metamath Proof Explorer
Description: Ordering relation for the cumulative hierarchy of sets. Part of
Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM , 22-Sep-2003)
Ref
Expression
Assertion
r1ord2
⊢ B ∈ On → A ∈ B → R 1 ⁡ A ⊆ R 1 ⁡ B
Proof
Step
Hyp
Ref
Expression
1
r1tr
⊢ Tr ⁡ R 1 ⁡ B
2
r1ord
⊢ B ∈ On → A ∈ B → R 1 ⁡ A ∈ R 1 ⁡ B
3
trss
⊢ Tr ⁡ R 1 ⁡ B → R 1 ⁡ A ∈ R 1 ⁡ B → R 1 ⁡ A ⊆ R 1 ⁡ B
4
1 2 3
mpsylsyld
⊢ B ∈ On → A ∈ B → R 1 ⁡ A ⊆ R 1 ⁡ B