This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preq1b.a | ||
| preq1b.b | |||
| Assertion | preq1b |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1b.a | ||
| 2 | preq1b.b | ||
| 3 | prid1g | ||
| 4 | 1 3 | syl | |
| 5 | eleq2 | ||
| 6 | 4 5 | syl5ibcom | |
| 7 | elprg | ||
| 8 | 1 7 | syl | |
| 9 | 6 8 | sylibd | |
| 10 | 9 | imp | |
| 11 | prid1g | ||
| 12 | 2 11 | syl | |
| 13 | eleq2 | ||
| 14 | 12 13 | syl5ibrcom | |
| 15 | elprg | ||
| 16 | 2 15 | syl | |
| 17 | 14 16 | sylibd | |
| 18 | 17 | imp | |
| 19 | eqcom | ||
| 20 | eqeq2 | ||
| 21 | 10 18 19 20 | oplem1 | |
| 22 | 21 | ex | |
| 23 | preq1 | ||
| 24 | 22 23 | impbid1 |