This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preq1b.a | |- ( ph -> A e. V ) |
|
| preq1b.b | |- ( ph -> B e. W ) |
||
| Assertion | preq1b | |- ( ph -> ( { A , C } = { B , C } <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1b.a | |- ( ph -> A e. V ) |
|
| 2 | preq1b.b | |- ( ph -> B e. W ) |
|
| 3 | prid1g | |- ( A e. V -> A e. { A , C } ) |
|
| 4 | 1 3 | syl | |- ( ph -> A e. { A , C } ) |
| 5 | eleq2 | |- ( { A , C } = { B , C } -> ( A e. { A , C } <-> A e. { B , C } ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ph -> ( { A , C } = { B , C } -> A e. { B , C } ) ) |
| 7 | elprg | |- ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
| 8 | 1 7 | syl | |- ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
| 9 | 6 8 | sylibd | |- ( ph -> ( { A , C } = { B , C } -> ( A = B \/ A = C ) ) ) |
| 10 | 9 | imp | |- ( ( ph /\ { A , C } = { B , C } ) -> ( A = B \/ A = C ) ) |
| 11 | prid1g | |- ( B e. W -> B e. { B , C } ) |
|
| 12 | 2 11 | syl | |- ( ph -> B e. { B , C } ) |
| 13 | eleq2 | |- ( { A , C } = { B , C } -> ( B e. { A , C } <-> B e. { B , C } ) ) |
|
| 14 | 12 13 | syl5ibrcom | |- ( ph -> ( { A , C } = { B , C } -> B e. { A , C } ) ) |
| 15 | elprg | |- ( B e. W -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) |
|
| 16 | 2 15 | syl | |- ( ph -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) |
| 17 | 14 16 | sylibd | |- ( ph -> ( { A , C } = { B , C } -> ( B = A \/ B = C ) ) ) |
| 18 | 17 | imp | |- ( ( ph /\ { A , C } = { B , C } ) -> ( B = A \/ B = C ) ) |
| 19 | eqcom | |- ( A = B <-> B = A ) |
|
| 20 | eqeq2 | |- ( A = C -> ( B = A <-> B = C ) ) |
|
| 21 | 10 18 19 20 | oplem1 | |- ( ( ph /\ { A , C } = { B , C } ) -> A = B ) |
| 22 | 21 | ex | |- ( ph -> ( { A , C } = { B , C } -> A = B ) ) |
| 23 | preq1 | |- ( A = B -> { A , C } = { B , C } ) |
|
| 24 | 22 23 | impbid1 | |- ( ph -> ( { A , C } = { B , C } <-> A = B ) ) |