This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
partim2
Metamath Proof Explorer
Description: Disjoint relation on its natural domain implies an equivalence relation on
the cosets of the relation, on its natural domain, cf. partim . Lemma
for petlem . (Contributed by Peter Mazsa , 17-Sep-2021)
Ref
Expression
Assertion
partim2
⊢ Disj R ∧ dom ⁡ R / R = A → EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A
Proof
Step
Hyp
Ref
Expression
1
disjim
⊢ Disj R → EqvRel ≀ R
2
1
adantr
⊢ Disj R ∧ dom ⁡ R / R = A → EqvRel ≀ R
3
disjdmqseq
⊢ Disj R → dom ⁡ R / R = A ↔ dom ⁡ ≀ R / ≀ R = A
4
3
biimpa
⊢ Disj R ∧ dom ⁡ R / R = A → dom ⁡ ≀ R / ≀ R = A
5
2 4
jca
⊢ Disj R ∧ dom ⁡ R / R = A → EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A