This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
petlem
Metamath Proof Explorer
Description: If you can prove that the equivalence of cosets on their natural domain
implies disjointness (e.g. eqvrelqseqdisj5 ), or converse function
(cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both
on their natural domain, are equivalent. Lemma for the Partition
Equivalence Theorem pet2 . (Contributed by Peter Mazsa , 18-Sep-2021)
Ref
Expression
Hypothesis
petlem.1
⊢ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A → Disj R
Assertion
petlem
⊢ Disj R ∧ dom ⁡ R / R = A ↔ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A
Proof
Step
Hyp
Ref
Expression
1
petlem.1
⊢ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A → Disj R
2
partim2
⊢ Disj R ∧ dom ⁡ R / R = A → EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A
3
simpr
⊢ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A → dom ⁡ ≀ R / ≀ R = A
4
disjdmqseq
⊢ Disj R → dom ⁡ R / R = A ↔ dom ⁡ ≀ R / ≀ R = A
5
4
pm5.32i
⊢ Disj R ∧ dom ⁡ R / R = A ↔ Disj R ∧ dom ⁡ ≀ R / ≀ R = A
6
1 3 5
sylanbrc
⊢ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A → Disj R ∧ dom ⁡ R / R = A
7
2 6
impbii
⊢ Disj R ∧ dom ⁡ R / R = A ↔ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A