This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
partim
Metamath Proof Explorer
Description: Partition implies equivalence relation by the cosets of the relation on
its natural domain, cf. partim2 . (Contributed by Peter Mazsa , 17-Sep-2021)
Ref
Expression
Assertion
partim
⊢ R Part A → ≀ R ErALTV A
Proof
Step
Hyp
Ref
Expression
1
partim2
⊢ Disj R ∧ dom ⁡ R / R = A → EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A
2
dfpart2
⊢ R Part A ↔ Disj R ∧ dom ⁡ R / R = A
3
dferALTV2
⊢ ≀ R ErALTV A ↔ EqvRel ≀ R ∧ dom ⁡ ≀ R / ≀ R = A
4
1 2 3
3imtr4i
⊢ R Part A → ≀ R ErALTV A