This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Ordered triple theorem, with triple expressed with ordered pairs.
(Contributed by NM, 1-May-1995) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
otth.1 |
|
|
|
otth.2 |
|
|
|
otth.3 |
|
|
Assertion |
otth2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
otth.1 |
|
| 2 |
|
otth.2 |
|
| 3 |
|
otth.3 |
|
| 4 |
1 2
|
opth |
|
| 5 |
4
|
anbi1i |
|
| 6 |
|
opex |
|
| 7 |
6 3
|
opth |
|
| 8 |
|
df-3an |
|
| 9 |
5 7 8
|
3bitr4i |
|