This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lbsext . The set S is the set of all linearly independent sets containing C ; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsext.v | ||
| lbsext.j | |||
| lbsext.n | |||
| lbsext.w | |||
| lbsext.c | |||
| lbsext.x | |||
| lbsext.s | |||
| Assertion | lbsextlem1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.v | ||
| 2 | lbsext.j | ||
| 3 | lbsext.n | ||
| 4 | lbsext.w | ||
| 5 | lbsext.c | ||
| 6 | lbsext.x | ||
| 7 | lbsext.s | ||
| 8 | 1 | fvexi | |
| 9 | 8 | elpw2 | |
| 10 | 5 9 | sylibr | |
| 11 | ssid | ||
| 12 | 6 11 | jctil | |
| 13 | sseq2 | ||
| 14 | difeq1 | ||
| 15 | 14 | fveq2d | |
| 16 | 15 | eleq2d | |
| 17 | 16 | notbid | |
| 18 | 17 | raleqbi1dv | |
| 19 | 13 18 | anbi12d | |
| 20 | 19 7 | elrab2 | |
| 21 | 10 12 20 | sylanbrc | |
| 22 | 21 | ne0d |