This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
isusgrs
Metamath Proof Explorer
Description: The property of being a simple graph, simplified version of isusgr .
(Contributed by Alexander van der Vekens , 13-Aug-2017) (Revised by AV , 13-Oct-2020) (Proof shortened by AV , 24-Nov-2020)
Ref
Expression
Hypotheses
isuspgr.v
⊢ V = Vtx ⁡ G
isuspgr.e
⊢ E = iEdg ⁡ G
Assertion
isusgrs
⊢ G ∈ U → G ∈ USGraph ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2
Proof
Step
Hyp
Ref
Expression
1
isuspgr.v
⊢ V = Vtx ⁡ G
2
isuspgr.e
⊢ E = iEdg ⁡ G
3
1 2
isusgr
⊢ G ∈ U → G ∈ USGraph ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2
4
prprrab
⊢ x ∈ 𝒫 V ∖ ∅ | x = 2 = x ∈ 𝒫 V | x = 2
5
f1eq3
⊢ x ∈ 𝒫 V ∖ ∅ | x = 2 = x ∈ 𝒫 V | x = 2 → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2 ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2
6
4 5
mp1i
⊢ G ∈ U → E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V ∖ ∅ | x = 2 ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2
7
3 6
bitrd
⊢ G ∈ U → G ∈ USGraph ↔ E : dom ⁡ E ⟶ 1-1 x ∈ 𝒫 V | x = 2