This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate a GCD via Euclid's algorithm. Theorem 5.6 in ApostolNT p. 109. (Contributed by Mario Carneiro, 19-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdi.1 | ||
| gcdi.2 | |||
| gcdmodi.3 | |||
| gcdmodi.4 | |||
| gcdmodi.5 | |||
| Assertion | gcdmodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdi.1 | ||
| 2 | gcdi.2 | ||
| 3 | gcdmodi.3 | ||
| 4 | gcdmodi.4 | ||
| 5 | gcdmodi.5 | ||
| 6 | 4 | oveq1i | |
| 7 | 1 | nn0zi | |
| 8 | modgcd | ||
| 9 | 7 3 8 | mp2an | |
| 10 | 2 | nn0zi | |
| 11 | modgcd | ||
| 12 | 10 3 11 | mp2an | |
| 13 | 6 9 12 | 3eqtr3i | |
| 14 | 3 | nnzi | |
| 15 | gcdcom | ||
| 16 | 10 14 15 | mp2an | |
| 17 | 13 16 5 | 3eqtri |