This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvpr2g
Metamath Proof Explorer
Description: The value of a function with a domain of (at most) two elements.
(Contributed by Alexander van der Vekens , 3-Dec-2017) (Proof shortened by BJ , 26-Sep-2024)
Ref
Expression
Assertion
fvpr2g
⊢ B ∈ V ∧ D ∈ W ∧ A ≠ B → A C B D ⁡ B = D
Proof
Step
Hyp
Ref
Expression
1
prcom
⊢ A C B D = B D A C
2
1
fveq1i
⊢ A C B D ⁡ B = B D A C ⁡ B
3
necom
⊢ A ≠ B ↔ B ≠ A
4
fvpr1g
⊢ B ∈ V ∧ D ∈ W ∧ B ≠ A → B D A C ⁡ B = D
5
3 4
syl3an3b
⊢ B ∈ V ∧ D ∈ W ∧ A ≠ B → B D A C ⁡ B = D
6
2 5
eqtrid
⊢ B ∈ V ∧ D ∈ W ∧ A ≠ B → A C B D ⁡ B = D