This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
f1imaen3g
Metamath Proof Explorer
Description: If a set function is one-to-one, then a subset of its domain is
equinumerous to the image of that subset. (This version of f1imaeng does not need ax-rep nor ax-pow .) (Contributed by BTernaryTau , 13-Jan-2025)
Ref
Expression
Assertion
f1imaen3g
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ F ∈ V → C ≈ F C
Proof
Step
Hyp
Ref
Expression
1
resexg
⊢ F ∈ V → F ↾ C ∈ V
2
1
3ad2ant3
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ F ∈ V → F ↾ C ∈ V
3
f1ores
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A → F ↾ C : C ⟶ 1-1 onto F C
4
3
3adant3
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ F ∈ V → F ↾ C : C ⟶ 1-1 onto F C
5
f1oen3g
⊢ F ↾ C ∈ V ∧ F ↾ C : C ⟶ 1-1 onto F C → C ≈ F C
6
2 4 5
syl2anc
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ F ∈ V → C ≈ F C