This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
f1imaeng
Metamath Proof Explorer
Description: If a function is one-to-one, then the image of a subset of its domain
under it is equinumerous to the subset. (Contributed by Mario Carneiro , 15-May-2015)
Ref
Expression
Assertion
f1imaeng
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ C ∈ V → F C ≈ C
Proof
Step
Hyp
Ref
Expression
1
f1ores
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A → F ↾ C : C ⟶ 1-1 onto F C
2
f1oeng
⊢ C ∈ V ∧ F ↾ C : C ⟶ 1-1 onto F C → C ≈ F C
3
2
ancoms
⊢ F ↾ C : C ⟶ 1-1 onto F C ∧ C ∈ V → C ≈ F C
4
1 3
stoic3
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ C ∈ V → C ≈ F C
5
4
ensymd
⊢ F : A ⟶ 1-1 B ∧ C ⊆ A ∧ C ∈ V → F C ≈ C