This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
eqvrelqseqdisj3
Metamath Proof Explorer
Description: Implication of eqvreldisj3 , lemma for the Member Partition Equivalence
Theorem mpet3 . (Contributed by Peter Mazsa , 27-Oct-2020) (Revised by Peter Mazsa , 24-Sep-2021)
Ref
Expression
Assertion
eqvrelqseqdisj3
⊢ EqvRel R ∧ B / R = A → Disj E -1 ↾ A
Proof
Step
Hyp
Ref
Expression
1
eqvreldisj3
⊢ EqvRel R → Disj E -1 ↾ B / R
2
1
adantr
⊢ EqvRel R ∧ B / R = A → Disj E -1 ↾ B / R
3
reseq2
⊢ B / R = A → E -1 ↾ B / R = E -1 ↾ A
4
3
disjeqd
⊢ B / R = A → Disj E -1 ↾ B / R ↔ Disj E -1 ↾ A
5
4
adantl
⊢ EqvRel R ∧ B / R = A → Disj E -1 ↾ B / R ↔ Disj E -1 ↾ A
6
2 5
mpbid
⊢ EqvRel R ∧ B / R = A → Disj E -1 ↾ A