This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of eqvreldisj3 , lemma for the Member Partition Equivalence Theorem mpet3 . (Contributed by Peter Mazsa, 27-Oct-2020) (Revised by Peter Mazsa, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqseqdisj3 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj3 | |- ( EqvRel R -> Disj ( `' _E |` ( B /. R ) ) ) |
|
| 2 | 1 | adantr | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` ( B /. R ) ) ) |
| 3 | reseq2 | |- ( ( B /. R ) = A -> ( `' _E |` ( B /. R ) ) = ( `' _E |` A ) ) |
|
| 4 | 3 | disjeqd | |- ( ( B /. R ) = A -> ( Disj ( `' _E |` ( B /. R ) ) <-> Disj ( `' _E |` A ) ) ) |
| 5 | 4 | adantl | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> ( Disj ( `' _E |` ( B /. R ) ) <-> Disj ( `' _E |` A ) ) ) |
| 6 | 2 5 | mpbid | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) ) |