This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations on domain quotients
eqvreldmqs
Metamath Proof Explorer
Description: Two ways to express comember equivalence relation on its domain quotient.
(Contributed by Peter Mazsa , 26-Sep-2021) (Revised by Peter Mazsa , 17-Jul-2023)
Ref
Expression
Assertion
eqvreldmqs
⊢ EqvRel ≀ E -1 ↾ A ∧ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ CoElEqvRel A ∧ ⋃ A / ∼ A = A
Proof
Step
Hyp
Ref
Expression
1
df-coeleqvrel
⊢ CoElEqvRel A ↔ EqvRel ≀ E -1 ↾ A
2
1
bicomi
⊢ EqvRel ≀ E -1 ↾ A ↔ CoElEqvRel A
3
dmqs1cosscnvepreseq
⊢ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ ⋃ A / ∼ A = A
4
2 3
anbi12i
⊢ EqvRel ≀ E -1 ↾ A ∧ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ CoElEqvRel A ∧ ⋃ A / ∼ A = A