This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Domain quotients
dmqs1cosscnvepreseq
Metamath Proof Explorer
Description: Two ways to express the equality of the domain quotient of the coelements
on the class A with the class A . (Contributed by Peter Mazsa , 26-Sep-2021)
Ref
Expression
Assertion
dmqs1cosscnvepreseq
⊢ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ ⋃ A / ∼ A = A
Proof
Step
Hyp
Ref
Expression
1
df-coels
⊢ ∼ A = ≀ E -1 ↾ A
2
1
dmqseqeq1i
⊢ dom ⁡ ∼ A / ∼ A = A ↔ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A
3
dmqscoelseq
⊢ dom ⁡ ∼ A / ∼ A = A ↔ ⋃ A / ∼ A = A
4
2 3
bitr3i
⊢ dom ⁡ ≀ E -1 ↾ A / ≀ E -1 ↾ A = A ↔ ⋃ A / ∼ A = A